

- Trained observers record all aerially detectable insect and disease signatures using digital aerial sketchmapping system
- Surveys are typically conducted:
 - 500-2000 feet AGL
 - 100 Knots (~115 MPH)
 - 1.5 2 mile swath
 - Approx. 25 acres per second
 - Approx. 2100 acres/min or 3.3 square miles/min

2016 Pro	duction Rates by Survey Type
Contour	171.3 hours flown 15,085,430 acres flown 88,064 acres/hour/aircraft 1,468 acres/minute/aircraft 24 acres/second/aircraft
Grid	 129 hours flown 26,332,250 acres flown 203,968 acres/hour/aircraft 3,399 acres/minute/aircraft 57 acres/second/aircraft 28 acres/second/observer

Common Name	Scientific name	Host(s)
Mountain pine beetle	Dendroctonus ponderosae	Ponderosa, lodgepole, limber and other pines
Douglas-fir beetle	Dendroctonus pseudotsugae	Douglas-fir
Spruce beetle	Dendroctonus rufipennis	Engelmann spruce
Pinyon ips	Ips confusus	Pinyon pines
Blue spruce ips	Ips hunteri	Blue spruce
Pine engraver beetles	lps pini, lps calligraphus, etc	Various pines
Fir engraver	Scolytus ventralis	White fir
Western balsam bark beetle	Dryocoetes confusus	Subalpine fir

Spruce Beetle Dendroctonus rufipennis

- prefer underside of downed trees
- 1-3 year lifecycle usually 2
- epidemics usually occur after wind throws
- flight July-August

2018 highlights across the State

Bark Beetles:

Spruce Beetle – Park, Conejos, Gunnison, La Plata, Hinsdale, Grand, Chaffee, Archuleta, Custer, Freemont, Rio Grande, and San Juan Counties

Douglas-Fir Beetle – Eagle, Garfield, Gunnison, Hinsdale, Pitkin and Saguache Counties

Fir Engraver – Ouray, and Archuleta Counties

Roundheaded Pine Beetle & Native Complex- Dolores County

Defoliators:

Western Spruce Budworm – Chaffee, Freemont, Dolores, Park, San Miguel, and Saguache Counties

Western Tent Caterpillar- Archuleta, Gunnison, Conejos, La Plata, Mineral, and Saguache Counties

Marssonina & Septoria Leaf Spots

- Hosts: Poplars, Cottonwoods and Aspen
- Common in Colorado in years with wet springs and summer rains.
- Symptoms: Blotch/spot and early leaf drop and/or a large amount of defoliation (Spot has yellow halo if its Marssonina; no yellow halo with Septoria)

Marssonina Leaf Spot Symptoms

Four-Eyed Spruce Beetle

Polygraphus rufipennis

Monitoring of adjacent trees would be ideal Areas of concern we will be surveying next flight season

One generation per year in Colorado and West

Typically a secondary beetle – persists in small diameter trees or drought stricken trees

MCH (3-Methylcyclohex-2-en-1-one)

Douglas-fir

- Plots treated with MCH bubbles (paired with 3-4 funnel Lindgren funnels outside the plot baited with aggregate pheromones) showed an 80% reduction in attacked Douglas-fir compared to untreated plots. However, the baited Lindgren funnels resulted in an eightfold increase of trees killed outside of the treatment plot. (Ross and Daterman, 1994)

- Additionally, <u>Ross and Wallin (2008)</u> found that, "MCH formulated to release at three times the current standard rate and place at 3 times fewer points per unit area can effectively prevent the infestation of live Douglas-fir."

- <u>Brookes, et.al. (2016)</u>, found that using higher release rate formulations (multiple bubbles) at wider spacing was equally effective in reducing Douglas-fir beetle as single bubble applications in narrower spacing. Treated plots experienced .5 to 4% infestation, whereas untreated control plots experienced 18% infestation. Thus concluding that higher release rate applications can reduce time (and therefore cost) of installing MCH treatments.

